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Method for measuring K11/K33 and eQ/e) ratios of nematic liquid
crystals with negative dielectric anisotropy

N. TSIBERIS*, H. ZENGINOGLOU, J. KOSMOPOULOS and P. PAPADOPOULOS

Department of Physics, University of Patras, Patras 26500, Greece

(Received 12 April 2004; in final form 25 June 2004; accepted 25 August 2004 )

For any nematic liquid crystal having a negative dielectric anisotropy ea, in a homeotropic
texture sandwiched between two parallel plates with a sufficiently large distance L between
them, and under a square external electric field excitation E0(t)5¡E0 and a static magnetic
field H perpendicular to the plates, the applied external voltage V at the threshold of the
electrohydrodynamic instability and the square S2 of the quantity S5qL/p are linear
functions of the Fréedericksz transition voltage VF. Here p/L is equal to the wave number
of the distortion along the Z-axis perpendicular to the walls and q is the wave number
of distortion along any X-direction perpendicular to the Z-axis. S2 is also a linear function of
voltage V. The two lines VF(VF) and V(VF) intersect at a value of voltage V0 such that
V5VF5V0, which depends only on frequency. With experimental measurements around the
point V0, one may compute the ratio of the elastic constants, K11/K33 where K11 and K33 are
the splay and bend elastic constants, respectively, and by combining the slopes of the two
lines S2(VF) and S2(V), one may obtain an estimate of the ratio of the dielectric constants eQ/e).

1. Introduction

A nematic liquid crystal with negative dielectric

anisotropy ea5eQ2e) is placed between two parallel

plates with a distance L between them. The initial

direction h0 of the director is parallel to the Z-axis and

perpendicular to the plates. A static and homogenous

external magnetic field H is applied parallel to the Z-

axis. Under an external electric field E0(t), the director h

makes an angle h with respect to the initial direction on

an arbitrary plane XOZ (figure 1).

In the conditions of the Fréedericksz transition (FT)

the angle h, which is very small, and also the director h,

depend only on the z component and we use the

equation

V 2
F~AzBH2 ð1Þ

where VF5E0L is the FT voltage, A54p3K33/2ea, and

B54pxaL2/2ea, K33 is the bend elastic constant and

xa5xQ2x) is the magnetic anisotropy.

All the physical quantities or functions involved in

the various equations depend on the angle h, which is

very small [1], particularly around the value V0, and we

can retain only those terms which are linear in h. We

accept also that all the physical quantities or functions

are periodic with respect to x and z [2].

Taking into account the distortion energy [3], force

equations of liquids and the viscous stress tensor [4, 5],

the forces and effects due magnetic [6] and electric fields

[7], the torque equation [8, 9], the theory for distortions

of Dubois et al. [10], and the linear theory of electro-

hydrodynamic instabilities (EHDI) [11] modified to

homeotropic textures of nematics with negative dielec-

tric anisotropy and under the conditions described, one

finds two equations relating the charge density r and

the curvature y5Lh/Lx:

:
rz

1

Tq

rzb1E0y~0
:
r~

Lr

Lt

� �
ð2Þ

:
yz

1

Ty
yzb2E0r~0

:
y~

Ly

Lt

� �
ð3Þ

*Corresponding author. Email: tsiberis@physics.upatras.gr Figure 1. The conditions of the nematic layer.
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where

Tq~
"\S2z"E

4p s\S2zsE
� �

1

Ty
~j1zj2E2

0

b1~
sH S2z1
� �

"\S2z"E
,

b2~{
S2 "agz "\S2z"E

� �
a3S2{a2

� �� �
"\S2z"E
� �

c1g{ a3S2{a2ð Þ2
h i

ð4Þ

Here sQ and s) are the conduction constants,

sH5e)sQ2eQs), and S5qL/p, where q is the distortion

wave number along the X-axis and

j1~
xaH2z K11S2zK33

� �
p2
�

L2

c1{ a3S2{a2ð Þ2
.

g
ð5Þ

j2~
"a"E S2z1

� �
4p "\S2z"E
� �

c1{ a3S2{a2ð Þ2
.

g
h i ð6Þ

for

g~g1z g1zg2za1ð ÞS2zg2S4, g1~
1

2
a4za5{a2ð Þ,

g2~
1

2
a3za4za6ð Þ;

c15a22a3, and ai(i51,2,3,4,5,6) are the Leslie coeffi-

cients.

These equations are more amenable to calculations,

needed for the problem, than the more rigorous

formulations of EHDI theory [12–16]. Those formula-

tions also extend to conditions of non-linear behaviour

of the nematic phase, which is not important in the

present work, particularly around the point V5VF5V0

where the angle h is very small.

2. Theoretical approach

For a key to symbols used in this discussion see table 1.

Generally eQ (S2+1)/(e)S2+eQ),1 and for S>4 (a3S22

a2)2/g%c1 where c1,1. From equations (4), (5) and (6)

we obtain

1

Ty
xaH2z

K11S2zK33

� �
p2

L2
{

{"a

4p
E2

0 :

The term 1/Ty is sufficiently small because the

torque due to the electric field is comparable to

the sum of torques due to the magnetic field and to

the distortion. Thus, the bend relaxation time for

molecular orientation Ty is much larger than the

frequency f of E0(t), and the curvature y cannot follow

the orientation of the oscillating field E0(t). Therefore, y
may be considered as being static and constant with

respect to time t. Thus we set
:
y~Ly=Lt~0 and

Table 1. Symbols used in this paper.

Symbol Designation

L Sample thickness
E0(t) External electric field excitation
V(t)5E0(t)L Applied external voltage at threshold of the electrohydrodynamic instability (EHDI)
H External magnetic field
VF Fréedericksz transition voltage
A, B Coefficients of Fréedericksz transition equation VF

25A+BH2

eQ, e) Dielectric constants
ea5eQ2e) Dielectric anisotropy
sQ, s) Conduction constants
xa5xQ2x) Magnetic anisotropy
S5qL/p q is the wave number of distortion along any X-direction perpendicular to the Z-axis
K11, K33 Splay and bend elastic constants
hE Ratio eQ/e)
hS Ratio sQ/s)

hK Ratio K11/K33

f frequency
x5e)f/ps) Variable which replaces the frequency
u(x) Function x tanh (x21)/[12x tanh (x21)]
V(x, VF) Applied external voltage V(t) at threshold of EHDI, which finally depends on variables x, VF

S2(x, VF) Square of S5qL/p, which depends on variables x, VF

l9(x), k9(x) Coefficients of linear equation V(x, VF)5l9(x)+k9(x)VF

l(x), k(x) Coefficients of linear equation S2(x, VF)5l(x)+k(x)VF

t(x) Slope of plot S2(x, VF) against V(x, VF)
V0 Intersection point of the lines VF(VF) and V(VF) (where V5VF5V0)

46 N. Tsiberis et al.
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equation (3) becomes

1

Ty
yzb2E0r~0: ð7Þ

A detailed theoretical analysis is given in

the appendix. Equation (A11), under the conditions

a/b(x)V2%1 and c(x)/e(x)VF
2%1 (see appendix),

becomes

k0 xð Þ& e xð Þ
b xð Þ

� �1
2

: ð8Þ

For f50 (i.e. x50 and u(x)5u(0)50) and from

equation (8) we obtain

k0 0ð Þ~ e 0ð Þ
b 0ð Þ

� �1
2

~
e2

h2

� �1
2

~
1

hSz
a3m
g2

 !1
2

< 1

and for fR‘ (xR‘ and u(x)R‘)

k0 ?ð Þ? 1

hE

� �1
2

~
"\
"E

� �1
2

> 1:

We can see from the last two relationships, as x (or

frequency f) increases, the slope k9(x) of the linear

equation (A12) also increases. Because the slope of the

line VF(VF) is equal to one, the two lines VF(VF) and

V(VF) intersect at a value V0 of the voltage V, which

depends only on frequency and increases rapidly as

frequency increases. This can be expressed as,

V0 xð Þ~ l0 xð Þ
1{k0 xð Þ&

1

y2 xð Þ
1

b xð Þð Þ
1
2{ e xð Þð Þ

1
2

: ð9Þ

This intersection takes place when b(x).e(x) or

u(x),(h2/e221)/(12hE). For values of f equal to a

certain frequency fC (or x5xC), which may be obtain-

ed from the relationship u(xC)5(h2/e221)/(12hE),

equation (9) gives V0(xC)5‘ (or V0(x),0 for f.fC)

and there is no intersection.

From equation (1) we have V0~ AzBH2
0

� �1
2. For

any frequency f,fC, on increasing the external voltage

from zero, and for values of magnetic field H,H0, we

first observe the FT and second, the EHDI. For H>H0

only the EHDI is observed (see figures 2–4 for MBBA).

We rewrite equation (A19) as

l0 xð Þ~AhK k xð Þk0 xð Þz l xð Þ 1{k0 xð Þð Þ
l0 xð Þ

� 	
ð10Þ

The quantities l9(x), k9(x), l(x) and k(x) in the linear

equations (A12), (A15) (see the appendix) are measur-

able, as is the quantity A, in equation (1). From

equation (10) one may compute the ratio of the elastic

Figure 2. Plot of the threshold V of EHDI vs. FT voltage VF

at a frequency of 20 Hz for MBBA.

Figure 3. Plot of threshold V of EHDI vs. FT voltage VF at a
frequency of 60 Hz for MBBA.

Figure 4. Plot of threshold V of EHDI vs. FT voltage VF at a
frequency of 100 Hz for MBBA.
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constants hK5K11/K33 by taking experimental measure-

ments at a single frequency.

We also rewrite equation (A21) of the appendix,

1

k xð Þ2
~hE

1

t xð Þ2
zC: ð11Þ

Here, C is a constant, which depends on the ratios

hK5K11/K33 and hE5eQ/e), and on the Leslie coeffi-

cients ai(i51,2,3,4,5,6). As we can see from equa-

tion (11), the ratio hE5eQ/e) equals the slope of the plot

1/k(x)2R1/t(x)2, where k(x) and t(x) are taken at
various (at least two) frequencies.

3. Experimental confirmation

3.1. Experimental set-up

The inner surfaces of the two parallel glass plates
are conductive (In2O3), and treated with a very

thin layer of lecithin which orients the molecules of

any nematic liquid crystal (in the present work,

MBBA) perpendicular to the plates. A mylar sheet

sets the distance between the two plates equal to

L5(172¡5) mm5(17.2¡0.5)61025 m. The experiments

take place at a temperature of 23–24uC.

A laser beam, polarized normal to the sheet, is passed

through the liquid crystal after a complete reflection in a

prism (figure 5). The beam leaving the crystal is
reflected again in a second prism and falls on a screen,

at a distance from the centre of the magnet, through a

polarizer whose optical axis is normal to the polariza-

tion plane of the beam. A voltage power supply for the

square electric excitation of MBBA and a current power

supply (with ammeter) for the magnet are used. The

intensity H of the magnetic field is controlled as a

function of current. With no external electric excitation,
one sees nothing on the screen. In conditions of FT, a

single dot of light appears. In the EHDI at voltage

threshold V, the texture behaves like a ‘diffraction

grating’ and concentric circles appear (figure 6).

3.2. Measuring the quantity S5qL/p

Because of the boundary conditions (the molecules on
the plates are normal to them), the distortion wave-

length lz along the Z-axis is lz,2L and the correspond-

ing wave number is equal to p/L.

Let lX52p/q be the distortion wavelength along the

X-axis. From the formula d sinw5l, where l is the

wavelength of the laser beam and d the ‘diffraction

grating constant’, we have d5lX52p/q and

sin w~
lq

2p
: ð12Þ

If the distance between the texture and the screen is

Figure 5. The experimental set-up.

Figure 6. The EHDI ‘diffraction grating’.

Figure 7. Measuring the ratio S5kX/kZ.
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equal to D, one finds (figure 7)

sin w~R
.

D2zR2
� �1=2

~R=D R << Dð Þ: ð13Þ

Finally, combining equations (12) and (13), we obtain

S~
qL

p
~

L

Dl
2R:

Constants L, D, l are known; by measuring the circle

diameter 2R on the screen we can compute the quantity

S5qL/p or the square S2. Thus, for any value of the

magnetic field H, one can find experimentally the

corresponding threshold voltage V of EHDI, and S

from the circle diameter.

3.3. Experimental measurements

Because the entire theory is based on formulae

expressed in the cgs unit system, the constants A, B of

the equation VF
25A+BH2 in cgs are given by the

relationships A54p3K33/2ea and B54pxaL2/2ea, where

VF is expressed in statvolts, H in gauss, K33 in dynes,

and L in centimetres. Usually, for liquid crystals, VF is

expressed in volts, H in kgauss (103 gauss), K33 in dynes,

and L in micrometers (1026 m); the constants A, B

become

A~36p3K33104
�
{"a and B~36pxaL2102

�
{"a

The experimental results for the FT for MBBA

(table 2) were measured at 60 Hz. From the plot of VF
2

against H2 (figure 8) we calculate the parameters A, B:

A5(19.32¡0.88) volts2 and B5(99.47¡0.05) volts2

kgauss22. It is easy now to compute, for any value of

H, the respective value of VF, independent of whether

the FT is seen or not. In the present work, V and S2 are

expressed as functions of the expression VF5(A+BH2)1/2

and not as functions of experimental values VF of FT.

Table 3 gives the experimental results in EHDI in

various frequencies around the point V0.

From table 4, the results of the measurable

quantities give a mean value for the ratio hK5

K11/K33: K11/K3350.692¡0.003 or K33/K1151.446¡

0.006.

This result is between the experimental limits K33/

K1151.11–1.6 of different authors [17], and it is in good

agreement with the value K33/K1151.4¡0.2 [18].

From the slopes k(x) and t(x) (table 4) of the plots S2

against VF and S2 against V, and the plot 1/k(x)2 against

1/t(x)2 (figure 9), one may obtain the value of the ratio

hE5eQ/e), which for MBBA was found to be hE5eQ/

e)50.885¡0.008. This result is between the values eQ/
e)54.72/5.2550.899 and eQ/e)54.7/5.450.87, taken

from [19] and [20], respectively.

Table 2. Experimental FT results. The square H2 of the magnetic field intensity H(kG) and the respective values of the square VF
2

of FT voltage VF(V).

H H2 VF VF
2

0.0 0.00 4.3 18.49
0.5 0.25 6.6 43.56
1.0 1.00 10.9 118.81
1.5 2.25 15.6 243.36
2.0 4.00 20.4 416.16
2.5 6.25 25.3 640.09
3.0 9.00 30.3 918.09
3.5 12.25 35.2 1239.04
4.0 16.00 40.1 1608.01
4.5 20.25 45.1 2034.01
5.0 25.00 50.1 2510.01
5.5 30.25 55.0 3025.00
6.0 36.00 60.0 3600.00

Figure 8. The plot VF
2 against H2 of FT voltage VF

2 for any
respective value H2 of magnetic field in FT transition for MBBA.
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If we know the magnetic anisotropy xa5xQ2x),

from the coefficients A and B of equation (1) we can

calculate the values of K11, K33, eQ and e). In addition,

using the same experimental measurements, one can

obtain the ratios e)/s) (from the variable x5e)f/ps))

and sQ/s), but the corresponding theoretical analysis is

somewhat more involved.

4. Conclusion

This work provides a method for measuring the ratios

K11/K33 and eQ/e), i.e. ratios of elastic and dielectric

constants, respectively, for any nematic liquid crystal

with a negative dielectric anisotropy. Except for

experimental results at the FT for obtaining the factor

A of equation (1), one only needs measurements at a

single frequency, around the point V0, in order to

calculate the quantities l9(x), k9(x), l(x), and k(x) from

plots of V against VF and S2 against VF, and finally

Table 3. Experimental results of the threshold voltage V(V) of the EHDI, and the square S2 of ratio S5qL/p, for different values
of the magnetic field H(kG) and FT voltage VF(V), around the point V0, at five frequencies.

H VF

20 Hz 40 Hz 60 Hz 80 Hz 100 Hz

V S2 V S2 V S2 V S2 V S2

3.0 30.2 34.5 30.91
3.5 35.2 38.5 35.32
4.0 40.1 42.5 39.34 43.1 36.97
4.5 45.1 46.3 43.57 47.1 41.07 47.9 37.98
5.0 50.1 50.2 48.02 51.2 45.03 52.1 42.13
5.5 55.0 54.2 52.28 55.3 49.16 56.3 45.76 57.3 42.13
6.0 60.0 58.2 56.73 59.4 53.48 60.6 49.55 61.7 45.76
6.5 65.0 62.2 60.93 63.5 57.56 64.8 53.48 66.1 49.55
7.0 70.0 66.2 65.28 67.6 61.36 69.0 57.56 70.4 53.08 71.8 48.40
7.5 74.9 71.7 65.72 73.3 61.36 74.8 56.73 76.3 51.89
8.0 79.9 77.5 65.28 79.2 60.08 80.8 55.09
8.5 84.9 81.8 68.89 83.6 63.96 85.2 58.39
9.0 89.9 87.9 67.51 89.7 61.79
9.5 94.8 92.3 71.16 94.3 65.28
10.0 99.8 98.9 68.87
10.5 104.8 103.4 72.09

Table 4. Results of the measurable quantities. The measurable quantities k9(x), l9(x)(V), k(x)(V21), l(x), t(x)(V21), 1/k(x)2(V2), 1/
t(x)2(V2), and the ratio k11/k33 from equation (28) at five frequencies (Hz).

f k9 l9 k l t 1/k2 1/t2 k11/k33

20 0.795 10.491 0.864 4.763 1.087 1.340 0.846 0.696
40 0.823 10.040 0.825 3.847 1.003 1.469 0.994 0.696
60 0.852 9.449 0.778 2.961 0.914 1.652 1.197 0.690
80 0.879 8.962 0.727 2.159 0.828 1.892 1.459 0.694
100 0.908 8.248 0.681 0.687 0.751 2.156 1.773 0.682

Figure 9. The plot 1/k(x)2 against 1/t(x)2 of slopes k(x) and
t(x) from which we may obtain the ratio hE5eQ/e).
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from equation (10) the ratio K11/K33. One also needs

measurements at a number of frequencies (at least two) in
order to calculate the slopes k(x) and t(x) of the plots S2

against VF and S2 against V for each frequency, and finally

the slope (which equals the ratio eQ/e)) of the plot 1/k(x)2

against 1/t(x)2 (equation 11). The only disadvantage of

this method is that it requires as exact measurements as

possible, and for any value of magnetic field we must take

the FT threshold VF several times (8–10 in the present

work) in order to obtain a reliable mean value. The same
holds, at different frequencies, for the ratio S5qL/p and

the threshold V of EHDI.
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Appendix

Initial equations

For a square wave electric field, at some half-period
with E0(t)5E0, and for y independent of time,

equations (2) and (7) give the relationship

V2~g V 2
FzAhK S2

� ��
N ðA1Þ

where V(t)5E0(t)L is the threshold of external voltage

of EHDI and

g~g S2
� �

~
hSzS2

1zS2

1

hSzm
S2 a3S2{a2ð Þ

g1z g1zg2za4ð ÞS2zg2S4

hK~K11

�
K33, hS~sE

�
s\,

hE~"E
�
"\, m~ hS{hEð Þ= hE{1ð Þ

N~N S2, x
� �

~1{ 1{hEP S2
� �

g S2
� �� �

x

R S2ð Þ tanh
R S2
� �
x

� 	

P S2
� �

~ 1zS2
� ��

hEzS2
� �

, R S2
� �

~

hSzS2
� ��

hEzS2
� �

and x~"\f =ps\:

The voltage V is a function of H, S and x. For

given values of H and x (given frequency), in

order to obtain the voltage V the value of the

threshold (V5min), must be LV/LS50 or

LV2/LS250. If we derive both terms of equation

(A1) with L/LS2, keeping in mind the condition

LV2/LS250, we obtain

V 2~ g0 V2
FzAhK S2

� �
zAhK g

� ��
N 0 ðA2Þ

for g95g9(S2)5Lg(S2)/LS2 and N95N9(S2, x)5LN(S2, x)/

LS2.

Substituting the term VF
2+AhKS2 from equation (A1)

into equation (A2)

V 2~AhK

{g2
�

g0

N{N 0g=g0
: ðA3Þ

From equations (A1) and (A3)

V2
F~AhK {S2{

g

g0
: N

N{N 0g=g0

� �
ðA4Þ

If we consider that
dP S2ð Þ

dS2 ~ hE{1

hEzS2ð Þ2
*0 and

dR S2ð Þ
dS2 ~ hE{hS

hEzS2ð Þ2
*0, then

N 0~hEPg0
x

R
tanh

R

x
and N{N 0

g

g0
~1{

x

R
tanh

R

x
:

Accepting also the simplifications P(S2),1 and
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R(S2),1 we obtain

N{N 0
g

g0
~1{x tanh x{1

� �

and equations (A3), (A4) become

V 2~AhK

{g2
�

g0

1{x tanh x{1ð Þ

V 2
F~AhK { S2zg=g0

� �
{

g2

g0
hE

x tanh x{1
� �

1{x tanh x{1ð Þ

� 	

Defining the function u(x)5x tanh (x21)/[1-x tanh (x21)]
we finally obtain

V2~AhK 1zu xð Þ½ � {g2
�

g0
� �

ðA5Þ

V2
F~AhK { S2zg=g0

� �
{

g2

g0
hEu xð Þ

� 	
ðA6Þ

Simplification of 2(S2+g/g9) and (2g2/g9)

Let the constants

d0~g1hS m~ hS{hEð Þ= hE{1ð Þ
d1~g1z g1zg2ð

za1ÞhS

e1~ g1z g1zg2za1ð Þ½ �hS

{a2m

d2~ g1zg2ð
za1Þzg2hS

e2~ g2z g1zg2za1ð Þ½ �hS

z a3{a2ð Þm
d3~g2 e3~g2h2za3m

where

g1~
1

2
a4za5{a2ð Þ, g2~

1

2
a3za4za6ð Þ

and the constants

c0~d2
0 f0~d2

0 d0~d0 e1{d1ð Þ
c1~2d0d1 f1~2d0d1 d1~2d0 e2{d2ð Þ
c2~d2

1z

2d0d2

f2~3d0d2{

d0e2zd1e1

d2~3d0 e3{d3ð Þz
d1e2{d2e1

c3~2 d0d3zð
d1d2Þ

f3~4d0d3z

2d2e1{2d0e3

d3~2 d1e3{ð d3e1Þ

c4~d2
2z

2d1d3

f4~3d3e1z

d2e2{d1e3

d4~d2e3{d3e2

c5~2d2d3 f5~2d3e2

c6~d2
3 f6~d3e3

:

From the functions g5g(S2) and g95g9(S2)5Lg(S2)/LS2

we calculate

{ S2zg=g0
� �

~
f0zf1S2zf2S4zf3S6zf4S8zf5S10zf6S12

dozd1S2zd2S4zd3S6zd4S8

{g2
�

g0~
c0zc1S2zc2S4zc3S6zc4S8zc5S10zc6S12

dozd1S2zd2S4zd3S6zd4S8
:

Dividing both terms of each fraction by S8 and setting

j51/S2

{ S2zg=g0
� �

~S4 f0j6zf1j5zf2j4zf3j3zf4j2zf5jzf6

doj4zd1j3zd2j2zd3jzd4
~S4w1 jð Þ

{g2
�

g0~S4 c0j6zc1j5zc2j4zc3j3zc4j2zc5jzc6

doj4zd1j3zd2j2zd3jzd4
~S4w2 jð Þ:

If we analyse the functions w1(j) and w2(j) in a Taylor

expansion relative to j and keeping the first three terms

we find

w1 jð Þ~h2zh1jzh0j2 and w2 jð Þ~e2ze1jze0j2

where the constants h2, h1, h0, e2, e1, e0 are given

by the relations

e2~c6=d4, e1~ c5d4{c6d3ð Þ
�

d2
4

e0~ d2
4 c4d4{c6d2ð Þ{d3d4 c5d4{c6d3ð Þ

� ��
d4

4

h2~f6=d4, h1~ f5d4{f6d3ð Þ
�

d2
4

h0~ d2
4 f4d4{f6d2ð Þ{d3d4 f5d4{f6d3ð Þ

� ��
d4

4

from which we obtain

{ S2zg=g0
� �

~h0zh1S2zh2S4 and {g2
�

g0

~e0ze1S2ze2S4

Linear equations

From equations (A5), (A6), and under the simplifica-

tions described we get

V2~AhK e0ze1S2ze2S4
� �

1zu xð Þ½ � ðA7Þ

V2
F~AhK y0 xð Þzy1 xð ÞS2zy2 xð ÞS4

� �
ðA8Þ

where yi(x)5hi+eihEu(x)?(i50,1,2).

52 N. Tsiberis et al.

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
3
8
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



From equation (A7) we have the solutions

S2~{e1=2e2+ azb xð ÞV 2
� �1

2 for

a~ e2
1{4e0e2

� ��
4e2

2 and b xð Þ~1=AhK e2 1zu xð Þ½ �:

The value of 2e1/2e2 is several units, b(x),1 and a lies

between 10 and 20. Generally, the voltage V is greater

than 20 V and the value of azb xð ÞV2
� �1

2 is greater than

the absolute value of 2e1/2e2. Thus, the sign (-) must be

dropped and

S2~{
e1

2e2
z azb xð ÞV 2
� �1

2: ðA9Þ

In the same way, from (A8) we find the equation

S2~{
y1 xð Þ

2y2 xð Þz c xð Þze xð ÞV2
F

� �1
2 ðA10Þ

where c xð Þ~ y1 xð Þ2{4y0 xð Þy2 xð Þ
4y2 xð Þ2 and e xð Þ~ 1

AhK y2 xð Þ.

For any frequency f (or respective value of x),

deleting S2 from equation (A9) and (A10) and defining

k9(x)5dV/dVF, we get

k0 xð Þ~ e xð Þ
b xð Þ

� �1
2

:
1z

a

b xð ÞV2

� �1
2

1z
c xð Þ

e xð ÞV2
F


 �1
2

: ðA11Þ

Under the arithmetic assumptions described, the condi-

tions a/b(x)V2%1 and c(x)/e(x)VF
2%1 are valid, and for

any specific value of x the quantity k9(x) is essentially

invariant under changes of VF or of the respective

magnetic field H. The threshold voltage V of EHDI is a

linear function of the FT voltage VF of the form

V x, VFð Þ~l0 xð Þzk0 xð ÞVF ðA12Þ

for

l0 xð Þ~
1z

a

b xð ÞV2

� �1
2

b xð Þð Þ
1
2

e1

2e2
{

y1 xð Þ
2y2 xð Þz

c xð Þ
c xð Þze xð ÞV 2

F

� �1
2

{
a

azb xð ÞV 2ð Þ
1
2

2
4

3
5

and because of the identity e1/2e22y1(x)/2y2(x);1/y2(x)

l0 xð Þ~
1z

a

b xð ÞV2

� �1
2

b xð Þð Þ
1
2

1

y2 xð Þz
c xð Þ

c xð Þze xð ÞV2
F

� �1
2

{
a

azb xð ÞV2ð Þ
1
2

2
4

3
5 ðA13Þ

As we can see from equation (A10), and for

c(x)/e(x)VF
2%1, the square S2 of S5qL/p is also a

linear function with respect to VF for any specific

frequency f. We now define k(x)5dS2/dVF. From (A10)

k xð Þ~dS2
�

dVF~ e xð Þð Þ
1
2

,
1z

c xð Þ
e xð ÞV2

F

� �1
2

: ðA14Þ

The slope k(x) is also essentially invariant under

changes of VF, and S2 is a linear function of FT voltage

VF of the form

S2 x, VFð Þ~l xð Þzk xð ÞVF ðA15Þ

for

l xð Þ~{
y1 xð Þ

2y2 xð Þz
c xð Þ

c xð Þze xð ÞV 2
F

� �1
2

: ðA16Þ

Final formulae

From the equations (A9), (A10), the identity e1/2e22

y1(x)2y2(x);1/y2(x), the relation e(x)51/AhKy2(x), and

equation (A14) we obtain

AhK k xð ÞzVF~V
b xð Þð Þ

1
2

e xð Þð Þ
1
2

1z
a

b xð ÞV 2

� �1
2

1z
c xð Þ

e xð ÞV 2
F

� �1
2

:

Multiplying both terms by k9(x) and using the

relation (A11)

AhK k xð Þk0 xð Þzk0 xð ÞVF~V$ xð Þ,

where $ xð Þ~ 1z
a

b xð ÞV 2

� 	�
1z

c xð Þ
e xð ÞV2

F

� 	
ðA17Þ

From equations (A12), (A17)

l0 xð Þ~AhK k xð Þk0 xð Þz 1{$ xð Þ½ �V : ðA18Þ

In spite of the fact that the term 12a(x) in

equation (A18) practically equals zero, we cannot

(A17)
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consider the product [12a(x)]V negligible in front of

the other terms in equation (A18). We will try to replace

12a(x) with measurable quantities, making some

necessary simplifications.

Analysing the denominator of $ xð Þ~
1z a

b xð ÞV2

h i.
1z

c xð Þ
e xð ÞV2

F

h i
in a Taylor expansion relative

to VF, one finds

1{$ xð Þ& c xð Þ
e xð ÞV 2

F

{
a

b xð ÞV 2
:

Deriving both terms relative to VF, and keeping in mind

the condition da(x)/dVF<0 and the relation k9(x)5dV/

dVF, we get

c xð Þ
e xð ÞV4

F

&
a:k0 xð Þ2

b xð ÞV 4
:

From this last relation and equation (A11) (from which

we obtain k0 xð Þ& e xð Þ=b xð Þð Þ
1
2,

c(x)ð Þ
1
2

e(x)V 2
F

&
a

1
2

b xð ÞV 2
or 1{$ xð Þ& c xð Þð Þ

1
2 c(x)ð Þ

1
2{a

1
2)

e(x)V2
F

Now, if we analyse the functions w1(j) and w2(j) in a

Taylor expansion relative to j and keep only the first

two terms, we find w1(j)5h2+h1j, w2(j)5e2+e1j and

a5e1
2/4e2

2, c(x)5y1(x)2/4y2(x)2, which means

a
1
2{ c xð Þð Þ

1
2~

e1

2e2
{

y1 xð Þ
2y2 xð Þ~

1

y2 xð Þ~AhK e xð Þ

generally
e1

2e2
> 0,

y1 xð Þ
2y2 xð Þ > 0

� �

1{$ xð Þ&AhK

{ c xð Þð Þ
1
2

V 2
F

:

From equation (A16) and for c(x)/e(x)VF
2%1

l xð Þ&{
y1 xð Þ

2y2 xð Þ~{ c xð Þð Þ
1
2 and 1{$ xð Þ&AhK

l xð Þ
V 2

F

:

Finally, equation (A18) becomes

l0 xð Þ~AhK k xð Þk0 xð Þz l xð Þ
V2

F

V

� 	
:

Let the voltages V, VF take values around V0. Then

V<VF<V0, and from V0<l9(x)+k9(x)V0 (equation A12)

l0 xð Þ~AhK k xð Þk0 xð Þz l xð Þ 1{k0 xð Þð Þ
l0 xð Þ

� 	
: ðA19Þ

We now, for any frequency f (or value x), define as

t(x);dS2/dV. From (A9), (A10) we obtain

t xð Þ:dS2
�

dV~ b xð Þð Þ
1
2

�
1z

a

b xð ÞV 2

� �1
2

: ðA20Þ

From (A14), (A20) and for a/b(x)V2%1 and c(x)/

e(x)VF
2%1, erasing the function u(x), we obtain

1

k xð Þ2
~hE

1

t xð Þ2
zC: ðA21Þ

Equations (A19), (A21) are the final formulae for

measuring the ratios hK5K11/K33 and hE5eQ/e).
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